These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure and activation of the large latent transforming growth factor-Beta complex.
    Author: Nunes I, Munger J, Harpel JG, Nagano Y, Shapiro R, Gleizes PE, Rifkin DB.
    Journal: J Am Optom Assoc; 1998 Oct; 69(10):643-8. PubMed ID: 9805445.
    Abstract:
    BACKGROUND: Many cytokines regulate processes involved in the pathogenesis of proliferative vitreoretinopathy. Transforming growth factor-beta (TGF-beta) is an example of a pluripotent growth factor that regulates cell proliferation, extracellular matrix (ECM) deposition, cell migration, and differentiation--all biological activities involved in the formation and progression of proliferative vitreoretinopathies. METHODS: A review of experimental results that demonstrate how vascular cells generate biologically active TGF-beta is presented. Most cell types--including endothelial cells and pericytes, which form the retinal microvasculature--express TGF-beta as a large latent TGF-beta complex. Mature TGF-beta, the biologically active form, must be generated from the large latent complex before it can signal by binding to its high affinity cell surface receptors. RESULTS: A critical step in regulating TGF-beta effects may be the activation of the large latent TGF-beta complex. Activation of the complex can be achieved by chemical and enzymatic treatments, or by various cell systems. We have identified that co-culturing bovine smooth muscle cells or pericytes and endothelial cells generates active TGF-beta. CONCLUSION: The mechanism of latent TGF-beta activation self-regulates through effectors of plasmin generation. Studying TGF-beta generation by co-cultures of pericytes and endothelial cells can provide us with insights into how disruption of latent TGF-beta activation may lead to unregulated endothelial proliferation, ECM deposition, and cellular infiltration, as observed clinically in neovascular- and fibrotic-related pathologies.
    [Abstract] [Full Text] [Related] [New Search]