These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A new UV-sensitive mutant that suggests a second excision repair pathway in Neurospora crassa.
    Author: Ishii C, Nakamura K, Inoue H.
    Journal: Mutat Res; 1998 Sep 11; 408(3):171-82. PubMed ID: 9806416.
    Abstract:
    In an attempt to understand the relationship between photorepair and dark repair in Neurospora crassa, a new mutant was isolated, which showed defects in both repair processes. The new mutant, mus-38, is moderately sensitive to UV and shows imperfect photoreactivation following UV irradiation. DNA was purified from this mutant and the other UV-sensitive mutants, and analyzed for the removal of cyclobutane pyrimidine dimers (CPDs). UV-specific endonuclease-sensitive sites (ESS) completely disappeared with 1 h of photoreactivation in mus-38 DNA, although the survival recovery with photoreactivation was greatly reduced in this mutant. This suggests that the insufficient survival recovery with photoreactivation in mus-38 does not result from a failure of photo-reversal of CPDs. Removal of ESS during liquid holding (dark repair) was slower in mus-38 compared to wild type. To test the possibility that this mutant was involved in excision repair, the double mutant was made between mus-38 and mus-18, which encodes a UV-damage-specific endonuclease. CPD excision in the mus-18 null mutant was severely affected but not completely inhibited. The double mutant showed a complete loss of the excision activity and was super sensitive to UV. These results indicate that mus-38 participates in an excision pathway that is different from the mus-18 pathway. The mus-38 mutant was sensitive not only to UV but also to some chemical mutagens which make adducts on DNA. Thus, mus-38 is possibly involved in an excision-repair pathway that is related to the Saccharomyces cerevisiae RAD3 pathway.
    [Abstract] [Full Text] [Related] [New Search]