These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparative mapping of distal murine chromosome 11 and human 17q21.3 in a region containing a modifying locus for murine plasma von Willebrand factor level.
    Author: Mohlke KL, Purkayastha AA, Westrick RJ, Ginsburg D.
    Journal: Genomics; 1998 Nov 15; 54(1):19-30. PubMed ID: 9806826.
    Abstract:
    Type 1 von Willebrand disease (VWD) is a common inherited disorder characterized by mild to moderate bleeding and reduced levels of von Willebrand factor (VWF). An animal model for human type 1 VWD, the RIIIS/J mouse strain, exhibits a prolonged bleeding time and reduced plasma VWF levels. We have previously mapped the defect in RIIIS/J to distal mouse Chr 11, distinct from the Vwf locus on Chr 6. This locus, Mvwf, was localized to an approximately 0.5-cM interval, tightly linked to Gip, distal to Ngfr, and proximal to Hoxb. We have now used these genetic markers to construct a contig of yeast and bacterial artificial chromosomes and bacteriophage P1 clones spanning the approximately 300-kb Mvwf nonrecombinant interval. In a comparative mapping approach, mouse homologues of mapped human expressed sequence tags (ESTs) were localized relative to the candidate interval. Twenty-one sequence-tagged sites and ESTs from the corresponding human syntenic region 17q21.3 were ordered using the high-resolution Stanford TNG3 radiation hybrid panel. Based on the resulting radiation hybrid map and our mouse genetic and physical maps, the order of human and mouse genes in a >0.7-cM region appears to be conserved. Six genes localized to the Mvwf nonrecombinant interval by comparative mapping included orthologs of GNGT2, ATP6N1, and a nuclear domain protein. Seven other genes or ESTs were excluded from the candidate interval, including orthologs of PHB, PDK2, a speckle-type protein, and a UDP-galactose transporter. Using exon trapping, 10 additional putative expressed sequences were identified within the Mvwf nonrecombinant interval, including a previously cloned murine glycosyltransferase as well as exons showing sequence similarity to genes for Caenorhabditis elegans and Saccharomyces cerevisiae predicted proteins, an Arabidopsis thaliana ubiquitin-conjugating enzyme, and a Gallus gallus mRNA zipcode-binding protein. Further characterization of these putative genes could identify the dominant mutation responsible for low plasma VWF levels in RIIIS/J mice. These data may also aid in the localization of other disease loci mapped to this region, including the gene for tricho-dento-osseous syndrome and a murine locus for susceptibility to ozone-induced acute lung injury.
    [Abstract] [Full Text] [Related] [New Search]