These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of the hypothalamic paraventricular nucleus on cardiovascular neurones in the rostral ventrolateral medulla of the rat.
    Author: Yang Z, Coote JH.
    Journal: J Physiol; 1998 Dec 01; 513 ( Pt 2)(Pt 2):521-30. PubMed ID: 9807000.
    Abstract:
    1. The question of whether neurones in the paraventricular nucleus (PVN) of the hypothalamus have an excitatory influence on reticulo-spinal vasomotor neurones of the rostral ventrolateral medulla (RVL) has been addressed in this study using anaesthetized rats. 2. Extracellular microelectrode recordings were made from sixty vasomotor neurones in the RVL, identified by their cardiac cycle-related probability of discharge, by the decrease in activity in response to an increase in arterial blood pressure produced by intravenous phenylephrine and by the increase in activity in response to a decrease in blood pressure produced by intravenous nitroprusside. 3. More than 70 % of these RVL vasomotor neurones were identified as spinally projecting by antidromically activating their axons via a stimulating electrode in the lateral funiculus of the T2 or T10 segment of spinal cord. 4. Activation of neurones at different sites in the PVN with a microinjection of d,l-homocysteic acid (DLH) elicited either pressor or depressor responses. 5. At PVN pressor sites fifteen RVL vasomotor neurones were shown to be activated prior to the blood pressure change. A further twenty RVL vasomotor neurones were observed to decrease activity following the blood pressure rise. At PVN depressor sites twelve RVL neurones were inhibited prior to the blood pressure change whereas another thirteen identified RVL neurones increased their discharge following the fall in blood pressure. 6. In three rats single shock electrical stimulation at a PVN pressor site, first identified with DLH, elicited a single or double action potential in thirteen RVL neurones with a latency of 27 +/- 1 ms. 7. It is concluded that PVN neurones may elicit increases in blood pressure via excitatory connections with RVL-spinal vasomotor neurones, and that other PVN neurones may elicit decreases in blood pressure via inhibitory connections with these RVL neurones.
    [Abstract] [Full Text] [Related] [New Search]