These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Residues 231 to 280 of the Epstein-Barr virus nuclear protein 2 are not essential for primary B-lymphocyte growth transformation. Author: Harada S, Yalamanchili R, Kieff E. Journal: J Virol; 1998 Dec; 72(12):9948-54. PubMed ID: 9811732. Abstract: Epstein-Barr virus (EBV) nuclear protein 2 (EBNA-2) is a transcriptional transactivator of cellular and viral gene expression and is essential for the transformation of resting human B lymphocytes into long-term lymphoblastoid cell lines (LCLs). Previous molecular genetic analyses identified three domains that are critical for transformation and showed that the rest of EBNA-2 is not critical. We now find that codons 231 to 280 that were part of one of the critical domains (J. I. Cohen, F. Wang, and E. Kieff, J. Virol. 65:2545-2554, 1991) can be deleted with only a small effect on the ability of EBNA-2 to transactivate gene expression. In transient transfection assays, EBNA-2 deleted for codons 231 to 280 accumulated to higher levels and was similar to wild-type EBNA-2 in activation of the BamC promoter and in association with RBPJk, a cellular transcription factor that is important for EBNA-2 interaction with promoter regulatory elements. However, EBNA-2 d231-280 activated the viral latent membrane protein 1 (LMP1) promoter with only 60% of wild-type efficiency. Recombinant EBVs specifically deleted for EBNA-2 codons 231 to 280 were efficient in initiating the transformation of resting primary human B lymphocytes into LCLs. However, these LCLs grew less well than wild-type EBV-transformed LCLs, and 4- to 10-fold more cells were required for outgrowth following limit dilution. EBNA-2 d231-280 accumulated to unusually high levels in the recombinant transformed LCLs, and this was associated with somewhat higher EBNA-1 and lower LMP1 expression, consistent with the near-wild-type activation of the BamC EBNA promoter and the abnormally low activation of the LMP1 promoter in transient transfection assays. Thus, EBNA-2 d231-280 modestly perturbed the regulation of viral gene expression and resulted in less LMP1, while having surprisingly subtle effects on LCL outgrowth. Deletion of EBNA-2 codons 292 to 310, which are closer to the site that specifies interaction with RBPJk, was more disruptive of RBPJk association and of the ability to transform B lymphocytes.[Abstract] [Full Text] [Related] [New Search]