These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Subdomain chimeras of hepatic lipase and lipoprotein lipase. Localization of heparin and cofactor binding.
    Author: Hill JS, Yang D, Nikazy J, Curtiss LK, Sparrow JT, Wong H.
    Journal: J Biol Chem; 1998 Nov 20; 273(47):30979-84. PubMed ID: 9812994.
    Abstract:
    To specify and localize carboxyl-terminal domain functions of human hepatic lipase (HL) and human lipoprotein lipase (LPL), two subdomain chimeras were created in which portions of the carboxyl-terminal domain were exchanged between the two lipases. The first chimera (HL-LPLC1) was composed of residues 1-344 of human HL, residues 331-388 of human LPL, and residues 415-476 of human HL. The second chimera (HL-LPLC2) consisted of just two segments, residues 1-414 of human HL and residues 389-448 of human LPL. These chimeric constructs effectively divided the HL C-terminal domain into halves, with corresponding LPL sequences either in the first or second portion of that domain. Both chimeras were lipolytically active and hydrolyzed triolein emulsions to a similar extent compared with native HL and LPL. Heparin-Sepharose chromatography demonstrated that HL-LPLC1 and HL-LPLC2 eluted at 0.80 and 1.3 M NaCl, respectively, elution positions that corresponded to native HL and LPL. Hence, substitution of LPL sequences into the HL carboxyl-terminal domain resulted in the production of functional lipases, but with distinct heparin binding properties. In addition, HL-LPLC2 trioleinase activity was responsive to apoC-II activation, although the -fold stimulation was less than that observed with native LPL. Moreover, an apoC-II fragment (residues 44-79) was specifically cross-linked to LPL and HL-LPLC2, but not to HL or HL-LPLC1. Finally, both chimeras hydrolyzed phospholipid with a specific activity similar to that of HL, which was unaffected by the presence of apoC-II. These findings indicated that in addition to a region found within the amino-terminal domain of LPL, apoC-II also interacted with the last half of the carboxyl-terminal domain (residues 389-448) to achieve maximal lipolytic activation. In addition, the relative heparin affinity of HL and LPL was determined by the final 60 carboxyl-terminal residues of each enzyme.
    [Abstract] [Full Text] [Related] [New Search]