These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis.
    Author: Sahiner B, Chan HP, Petrick N, Helvie MA, Goodsitt MM.
    Journal: Phys Med Biol; 1998 Oct; 43(10):2853-71. PubMed ID: 9814523.
    Abstract:
    A genetic algorithm (GA) based feature selection method was developed for the design of high-sensitivity classifiers, which were tailored to yield high sensitivity with high specificity. The fitness function of the GA was based on the receiver operating characteristic (ROC) partial area index, which is defined as the average specificity above a given sensitivity threshold. The designed GA evolved towards the selection of feature combinations which yielded high specificity in the high-sensitivity region of the ROC curve, regardless of the performance at low sensitivity. This is a desirable quality of a classifier used for breast lesion characterization, since the focus in breast lesion characterization is to diagnose correctly as many benign lesions as possible without missing malignancies. The high-sensitivity classifier, formulated as the Fisher's linear discriminant using GA-selected feature variables, was employed to classify 255 biopsy-proven mammographic masses as malignant or benign. The mammograms were digitized at a pixel size of 0.1 mm x 0.1 mm, and regions of interest (ROIs) containing the biopsied masses were extracted by an experienced radiologist. A recently developed image transformation technique, referred to as the rubber-band straightening transform, was applied to the ROIs. Texture features extracted from the spatial grey-level dependence and run-length statistics matrices of the transformed ROIs were used to distinguish malignant and benign masses. The classification accuracy of the high-sensitivity classifier was compared with that of linear discriminant analysis with stepwise feature selection (LDAsfs). With proper GA training, the ROC partial area of the high-sensitivity classifier above a true-positive fraction of 0.95 was significantly larger than that of LDAsfs, although the latter provided a higher total area (Az) under the ROC curve. By setting an appropriate decision threshold, the high-sensitivity classifier and LDAsfs correctly identified 61% and 34% of the benign masses respectively without missing any malignant masses. Our results show that the choice of the feature selection technique is important in computer-aided diagnosis, and that the GA may be a useful tool for designing classifiers for lesion characterization.
    [Abstract] [Full Text] [Related] [New Search]