These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphatidylinositol 3-kinase gamma mediates shear stress-dependent activation of JNK in endothelial cells. Author: Go YM, Park H, Maland MC, Darley-Usmar VM, Stoyanov B, Wetzker R, Jo H. Journal: Am J Physiol; 1998 Nov; 275(5):H1898-904. PubMed ID: 9815099. Abstract: Shear stress differentially activates extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) by mechanisms involving Galphai2 and Gbeta/gamma proteins, respectively, in bovine aortic endothelial cells (BAEC). The early events in this signaling mechanism by which G proteins regulate ERK and JNK in response to shear stress have not been defined. Here we show that BAEC endogenously express a G protein-dependent form of phosphatidylinositol 3-kinase, PI3Kgamma, and its activity is stimulated by shear stress. PI3Kgamma activity was measured in vitro using BAEC that were transiently transfected with an epitope-tagged PI3Kgamma (vsv-PI3Kgamma). Exposure of BAEC to shear stress rapidly and transiently stimulated the activity of vsv-PI3Kgamma (maximum by 15 s, with a return to basal after 1-min exposure to 5 dyn/cm2 shear stress). Activity of vsv-PI3Kgamma was stimulated by shear stress intensities as low as 0.5 dyn/cm2. Treatment of BAEC with an inhibitor of PI3K, wortmannin, inhibited shear-dependent activation of JNK but had no effect on that of ERK. Furthermore, expression of a kinase-inactive mutant (PI3KgammaK799R) in BAEC inhibited the shear-dependent activation of JNK but not ERK. Taken together, these results suggest that PI3Kgamma selectively regulates the shear-sensitive JNK pathway. This differential and novel signaling pathway may be responsible for coordinating various mechanosensitive events in endothelial cells.[Abstract] [Full Text] [Related] [New Search]