These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rotavirus NSP5 phosphorylation is up-regulated by interaction with NSP2.
    Author: Afrikanova I, Fabbretti E, Miozzo MC, Burrone OR.
    Journal: J Gen Virol; 1998 Nov; 79 ( Pt 11)():2679-86. PubMed ID: 9820143.
    Abstract:
    We have previously shown that a number of isoforms of the non-structural rotavirus protein NSP5 are found in virus-infected cells. These isoforms differ in their level of phosphorylation which, at least in part, appears to occur through autophosphorylation. NSP5 co-localizes with another non-structural protein, NSP2, in the viroplasms of infected cells where virus replication takes place. We now show that NSP5 can be chemically cross-linked in living cells with the viral polymerase VP1 and NSP2. Interaction of NSP5 with NSP2 was also demonstrated by co-immunoprecipitation of NSP2 and NSP5 from extracts of UV-treated rotavirus-infected cells. In addition, in transient transfection assays, NSP5 phosphorylation in vivo was enhanced by co-expression of NSP2. An NSP5 C-terminal domain deletion mutant, was completely unable to be phosphorylated either in the presence or absence of NSP2. However, a 33 aa N-terminal deletion mutant of NSP5 was shown to become hyperphosphorylated in vivo and to be insensitive to NSP2 activation, suggesting a regulatory role for this domain in NSP5 phosphorylation and making it a candidate for the interaction with NSP2. These mutants also allow a preliminary mapping of NSP5 autophosphorylation activity.
    [Abstract] [Full Text] [Related] [New Search]