These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: FPP modulates mammalian sperm function via TCP-11 and the adenylyl cyclase/cAMP pathway. Author: Adeoya-Osiguwa SA, Dudley RK, Hosseini R, Fraser LR. Journal: Mol Reprod Dev; 1998 Dec; 51(4):468-76. PubMed ID: 9820206. Abstract: Fertilization promoting peptide (FPP; pGlu-Glu-ProNH2), which is found in seminal plasma, promotes capacitation but inhibits spontaneous acrosome loss in mammalian spermatozoa in vitro. Adenosine, known to modulate the adenylyl cyclase (AC)/cAMP pathway, elicits these same responses whereas FPP + adenosine produces an enhanced response, leading to the hypothesis that FPP and adenosine modulate the same signal transduction pathway but act via different receptors. TCP-11, the product of a t-complex gene, is the putative receptor for FPP: Fab fragments of anti-TCP-11 antibodies have the same effect as FPP on mouse spermatozoa and Gln-FPP, a competitive inhibitor of FPP, also competitively inhibits responses to the Fab fragments. In the present study, specific binding of 3H-FPP to sperm membranes was significantly inhibited by 200 nM Gln-FPP and anti-TCP-11 Fab fragments (1/25 dilution), thus confirming that FPP, Gln-FPP, and Fab fragments compete for the same binding site. In addition, spermatozoa treated with A23187 to induce the acrosome reaction bound significantly less 3H-FPP than untreated cells, suggesting that a large proportion of the FPP binding sites are associated with the acrosomal cap region; TCP-11 is located in this region. In other experiments, 100 nM FPP significantly stimulated cAMP production in mouse sperm membranes, permeabilized cells and intact cells. Furthermore, Gln-FPP inhibited production of cAMP in response to FPP but not to adenosine (10 microM) or its analogue NECA (100 nM), supporting the involvement of two different receptors. Finally, anti-TCP-11 Fab fragments (1/25 dilution) significantly stimulated cAMP production, whereas low Fab (1/200; nonstimulatory when used alone) plus adenosine (10 microM) significantly enhanced the stimulation of capacitation by adenosine. These results support the hypotheses that TCP-11 is the receptor for FPP and that FPP<-->TCP-11 interactions modulate AC/cAMP.[Abstract] [Full Text] [Related] [New Search]