These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tyrosinase stabilization by Tyrp1 (the brown locus protein).
    Author: Kobayashi T, Imokawa G, Bennett DC, Hearing VJ.
    Journal: J Biol Chem; 1998 Nov 27; 273(48):31801-5. PubMed ID: 9822646.
    Abstract:
    Mammalian melanogenesis is regulated directly or indirectly by over 85 distinct loci. The Tyr/albino locus, in which mutations cause a lack of pigmentation, encodes tyrosinase (Tyr), the critical and rate-limiting melanogenic enzyme. Other melanogenic enzymes include Tyrp1 (or TRP1) and 3,4-dihydroxyphenylalanine-chrome tautomerase (Dct or TRP2) encoded at the Tyrp1/brown and Dct/slaty loci, respectively. Murine Tyrp1 can oxidize 5, 6-dihydroxyindole-2-carboxylic acid (DHICA) produced by Dct, but mutations in Tyrp1 also affect the catalytic functions of Tyr. All three enzymes are membrane-bound melanosomal proteins with similar structural features and are thought to interact within and stabilize a melanogenic complex. We have now further investigated the effect of a Tyrp1(b) mutation on Tyr stability. Pulse/chase labeling experiments show that Tyr is degraded more quickly in Tyrp1(b) mutant melanocytes than in melanocytes wild type at that locus. This reduced stability of Tyr can be partly rescued by infection with the wild type Tyrp1 gene, and this is accompanied by phenotypic rescue of infected melanocytes. In sum, these results suggest that, in addition to its catalytic function in oxidizing DHICA, Tyrp1 may play an important role in stabilizing Tyr, a second potential role in the regulation of melanin formation.
    [Abstract] [Full Text] [Related] [New Search]