These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Carbachol inhibition of Ca2+ currents in ventricular cells obtained from neonatal and adult rats.
    Author: Katsube Y, Yokoshiki H, Sunagawa M, Seki T, Yamamoto M, Sperelakis N.
    Journal: Eur J Pharmacol; 1998 Oct 09; 358(3):269-75. PubMed ID: 9822894.
    Abstract:
    We investigated the postnatal developmental changes produced by the muscarinic receptor agonist, carbachol, on the L-type Ca2+ current (ICa(L)) in neonatal (aged 5 to 7 days) and adult (aged 2 to 5 months) rat ventricular cells by using the whole-cell voltage clamp technique. Carbachol inhibited the isoproterenol-stimulated ICa(L). The maximal inhibition was 89.3 +/- 4.8% (n = 5) in neonatal cells and 17.7 +/- 7.7% (n = 9) in adult cells. Carbachol inhibited the forskolin-stimulated ICa(L) to almost same extent as the isoproterenol-stimulated ICa(L). In the cells pretreated with pertussis toxin, carbachol failed to inhibit the isoproterenol-stimulated ICa(L), indicating that carbachol produced its effect via a pertussis toxin-sensitive G-protein pathway. The effects of carbachol in adult cells became more pronounced, increasing from 17.7% to 54.8% (n = 11), with the addition of the synthetic inhibitory G-protein alpha subunit (Gi alpha) (1 microM) to the reaction. Conversely, the alpha subunit of another pertussis toxin-sensitive synthetic G-protein (G(o) alpha, 1 microM) failed to mimic the effect of Gi alpha. These results suggest that, in rat ventricular cells, (1) the action of carbachol on ICa(L) showed a marked decrease during development; (2) the decrease in the effect of carbachol in adult cells is in part due to a decrease in the activity of pertussis toxin-sensitive G protein, especially Gi alpha.
    [Abstract] [Full Text] [Related] [New Search]