These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acute hypercapnia increases the oxygen-carrying capacity of the blood in ventilated dogs.
    Author: Torbati D, Mangino MJ, Garcia E, Estrada M, Totapally BR, Wolfsdorf J.
    Journal: Crit Care Med; 1998 Nov; 26(11):1863-7. PubMed ID: 9824080.
    Abstract:
    OBJECTIVE: To test the hypothesis that PaCO2 levels generated during permissive hypercapnia may enhance arterial oxygenation, when ventilation is maintained. DESIGN: Prospective study. SETTING: Research laboratory in a hospital. SUBJECTS: One group of eight mongrel dogs (four male; four female). INTERVENTIONS: The dogs were anesthetized (30 mg/kg iv pentobarbital), intubated, and cannulated in one femoral artery and vein. While paralyzed with 0.1 mg/kg/hr iv vecouronium bromide, all subjects were ventilated with room air. Anesthesia was maintained, using 2 to 3 mg/kg/hr iv pentobarbital. Arterial hypercapnia at the levels generated during permissive hypercapnia was produced by stepwise increases in the dry, inspired Pco2 (PiCO2) (0, 30, 45, 60 and 75 torr [0, 4, 6, 8, and 10 kPa]; 15 mins each). MEASUREMENTS AND MAIN RESULTS: Blood gas profiles were determined at each level of hypercapnia. The minute volume was maintained at the baseline level during all exposures. Arterial hypercapnia produced gradual and significant increases in the hemoglobin concentration. These increases were approximately 6%, 7%, 11%, and 14% at PiCO2 of 30, 45, 60, and 75 torr (4, 6, 8, and 10 kPa), respectively (p < .05; repeated analysis of variance followed by Dunnett multiple comparisons test). In parallel, the oxygen content increased by approximately 6%, 7%, 11%, and 13%, respectively. During hypercapnic trials, the PaO2 remained at the normal range, whereas the dry, inspired PO2 (PiO2) was reduced from 150 to 138 torr (20 to 18.4 kPa). The average PaO2 at the highest investigated level of arterial hypercapnia was at a normal range. The hemoglobin concentration and oxygen content returned to baseline values 30 mins after hypercapnic trials. The PaCO2 and pH became normalized 15 mins after hypercapnic trials. Indirect evidence for a similar response to hypercapnia in humans is presented. CONCLUSIONS: Permissive hypercapnia due to inhaled CO2 increases oxygen-carrying capacity in dogs. The PaO2 remains at normal range even at a PiCO2 of 75 torr (10 kPa). The benefits of these effects during permissive hypercapnia, due to controlled hypoventilation, warrants investigation.
    [Abstract] [Full Text] [Related] [New Search]