These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PACAP activates calcium influx-dependent and -independent pathways to couple met-enkephalin secretion and biosynthesis in chromaffin cells. Author: Hahm SH, Hsu CM, Eiden LE. Journal: J Mol Neurosci; 1998 Aug; 11(1):43-56. PubMed ID: 9826785. Abstract: Pituitary adenylate cyclase activating polypeptide-27 (PACAP-27) caused a dose-dependent increase in met-enkephalin secretion and increased production of met-enkephalin peptide and proenkephalin A (PEnk) mRNA in bovine chromaffin cells, at concentrations as low as 300 pM. PACAP-38 was less potent than PACAP-27, but had similar effects. Vasoactive intestinal polypeptide (VIP) (1-100 nM) was without appreciable effect on either enkephalin secretion or biosynthesis, implicating PACAP type I receptors in PACAP-stimulated enkephalin secretion and synthesis. PACAP type I receptors can activate adenylate cyclase and stimulate phospholipase C through heterotrimeric G protein interactions, leading to increased intracellular cyclic AMP (cAMP), inositol triphosphate (IP3)-mediated calcium mobilization, and calcium- and diacylglycerol (DAG)-mediated protein kinase C (PKC) activation. Enkephalin secretion evoked by 10-100 nM PACAP-27 was not inhibited by 1 microM (-)-202-791, an L-type specific dihydropyridine calcium channel blocker, but was inhibited 65-80% by the arylalkylamine calcium channel blocker D600. Forty mM potassium-evoked secretion was inhibited > 90% by both D600 and (-)-202-791, 25 microM forskolin-induced secretion was blocked < 50% by D600 and was unaffected by (-)-202-791, and 100 nM phorbol myristate acetate (PMA)-induced secretion was unaffected by either D600 or (-)-202-791. Enkephalin biosynthesis was increased by 10 nM PACAP-27, as measured by increased met-enkephalin pentapeptide content and PEnk A mRNA levels. PACAP-, forskolin-, and PMA-stimulated enkephalin synthesis were not blocked by D600 or (-)-202-791. Elevated potassium-induced enkephalin biosynthesis upregulation was completely blocked by either D600 or (-)-202-791 at the same concentrations. PACAP acting through type I PACAP receptors couples calcium influx-dependent enkephalin secretion and calcium influx-independent enkephalin biosynthesis in chromaffin cells. Restriction of the effects of enhanced calcium influx to stimulation of secretion, but not of biosynthesis, is unique to PACAP. By contrast, potassium-induced enkephalin biosynthesis upregulation is completely calcium influx dependent, specifically via calcium influx through L-type calcium channels. We propose that subpopulations of voltage-dependent calcium channels are differentially linked to intracellular signal transduction pathways that control neuropeptide gene expression and secretion in chromaffin cells.[Abstract] [Full Text] [Related] [New Search]