These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monovalent cation and L-type Ca2+ channels participate in calcium paradox-like phenomenon in rabbit aortic smooth muscle cells.
    Author: Zakharov SI, Mongayt DA, Cohen RA, Bolotina VM.
    Journal: J Physiol; 1999 Jan 01; 514 ( Pt 1)(Pt 1):71-81. PubMed ID: 9831717.
    Abstract:
    1. The effects of removal of extracellular divalent cations (experimental calcium paradox conditions) were studied on the whole-cell current in freshly isolated smooth muscle cells (SMCs), and on contraction in rabbit aortic rings. 2. Aortic rings treated for 30-60 min with extracellular Ca2+- and Mg2+-free solution contracted following readmission of extracellular Ca2+, even in the presence of nifedipine. 3. In isolated SMCs, the removal of extracellular Ca2+ and Mg2+ induced a non-inactivating whole-cell inward current and membrane depolarization. This current was a monovalent cation (MC) current which reversed at around 0 mV and conducted K+ >= Cs+ > Na+ > Li+. Extracellular divalent cations (Ca2+, Mg2+, Ba2+, Mn2+ and Ni2+) inhibited MC current. 4. Using noise analysis of the whole-cell MC current, the single MC channel conductance was estimated to be < 450 fS. 5. MC current was insensitive to nifedipine, TEA, 4-aminopyridine, SK&F 96365 and S-nitroso-N-acetyl-penicillamine (SNAP), but was decreased by amiloride and low pH. 6. When EGTA was present in Ca2+- and Mg2+-free solution, a significant nifedipine-sensitive Na+ current through L-type Ca2+ channels developed in addition to MC current. 7. It is concluded that upon the removal of extracellular Ca2+ and Mg2+ from resting SMCs, an inward MC current develops allowing Na+ influx and causing SMC depolarization which could be the important steps leading to vessel contraction upon Ca2+ readmission. Addition of EGTA to Ca2+- and Mg2+-free solution greatly potentiates Na+ influx and vessel contraction by allowing additional Na+ influx through L-type Ca2+ channels which are activated presumably by MC current-induced depolarization.
    [Abstract] [Full Text] [Related] [New Search]