These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of retinoic acid on proliferation and polyamine metabolism in cultured bovine retinal pigment epithelial cells.
    Author: Yasunari T, Yanagihara N, Komatsu T, Moriwaki M, Shiraki K, Miki T, Yano Y, Otani S.
    Journal: Ophthalmic Res; 1999; 31(1):24-32. PubMed ID: 9831819.
    Abstract:
    Reports regarding the effect of all-trans-retinoic acid (RA) on the cell growth of retinal pigment epithelial cells (RPE) have been contradictory. The aims of this study are to clarify the in vitro effect of RA on RPE cells and to examine polyamine metabolism after RA stimulation. A 4-day incubation of fetal-calf-serum (FCS)-stimulated RPE cells with 10 or 25 microM RA significantly increased both cell number and [3H]thymidine incorporation. RPE cells grown over an extended period for 8 days also increased in number and reached full confluency. However, if the incubation was further extended to 12 days, no further increase in cell number was detected. RA treatment of FCS-stimulated RPE cells shifted the peak of ornithine decarboxylase (ODC) activity from 16 to 4 h. S-adenosylmethionine decarboxylase (SAMDC) activity and spermidine/spermine N1-acetyltransferase (SAT) activity of RA-treated RPE cells were significantly greater until 8 and 16 h after incubation, respectively. The putrescine content was significantly increased in RA-treated RPE cells up until 24 h, while spermidine, spermine and N1-acetylspermidine contents were significantly increased until 16 h. Our findings suggest that RA treatment increases the intracellular polyamine concentration of RPE cells via activation of ODC, SAMDC and SAT and that this results in the promotion of RPE cell growth until the cells reach full confluency.
    [Abstract] [Full Text] [Related] [New Search]