These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Thyroid hormone action on liver, heart, and energy expenditure in thyroid hormone receptor beta-deficient mice.
    Author: Weiss RE, Murata Y, Cua K, Hayashi Y, Seo H, Refetoff S.
    Journal: Endocrinology; 1998 Dec; 139(12):4945-52. PubMed ID: 9832432.
    Abstract:
    Thyroid hormone (TH) responsive genes can be both positively and negatively regulated by TH through receptors (TR) alpha and beta expressed in most body tissues. However, their relative roles in the regulation of specific gene expression remain unknown. The TR beta knockout mouse, which lacks both TR beta1 and TR beta2 isoforms, provides a model to examine the role of these receptors in mediating TH action. TR beta deficient (TR beta-/-) mice that show no compensatory increase in TR alpha, and wild-type (TR beta+/+) mice of the same strain were deprived of TH by feeding them a low iodine diet containing propylthiouracil, and were then treated with supraphysiological doses of L-T3 (0.5, 5.5, and 25 microg/day/mouse). TH deprivation alone increased the serum cholesterol concentration by 25% in TR beta+/+ mice and reduced it paradoxically by 23% in TR beta-/- mice. TH deprivation reduced the serum alkaline phosphatase (AP) concentration by 31% in TR beta+/+ mice but showed no change in the TR beta-/- mice. Treatment with L-T3 (0.5 to 25 microg/mouse/day) caused a 57% decrease in serum cholesterol and a 231% increase in serum AP in the TR beta+/+ mice. The TR beta-/- mice were resistant to the L-T3 induced changes in serum cholesterol and showed increase in AP only with the highest L-T3 dose. Basal heart rate (HR) in TR beta-/- mice was higher than that of TR beta+/+ mice by 11%. HR and energy expenditure (EE) in both TR beta+/+ and TR beta-/- mice showed similar decreases (49 and 46%) and increases (49 and 41%) in response to TH deprivation and L-T3 treatment, respectively. The effect of TH on the accumulation of messenger RNA (mRNA) of TH regulated liver genes was also examined. TH deprivation down regulated spot 14 (S14) mRNA and showed no change in malic enzyme (ME) mRNA in both TR beta+/+ and TR beta-/- mice. In contrast treatment with L-T3 produced an increase in S14 and ME but no change in TR beta-/- mice. From these results, it can be concluded that regulation of HR and EE are independent of TR beta. With the exception of serum cholesterol concentration and liver ME mRNA accumulation, all other markers of TH action examined during TH deprivation exhibited the expected responses in the absence of TR beta. Thus, as previously shown for serum TSH, TR beta is not absolutely necessary for some changes typical of hypothyroidism to occur. In contrast, except for HR and EE, the full manifestation of TH-mediated action required the presence of TR beta.
    [Abstract] [Full Text] [Related] [New Search]