These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Structure-activity relationships for antiplasmodial activity among 7-substituted 4-aminoquinolines.
    Author: De D, Krogstad FM, Byers LD, Krogstad DJ.
    Journal: J Med Chem; 1998 Dec 03; 41(25):4918-26. PubMed ID: 9836608.
    Abstract:
    Aminoquinolines (AQs) with diaminoalkane side chains (-HNRNEt2) shorter or longer than the isopentyl side chain [-HNCHMe(CH2)3NEt2] of chloroquine are active against both chloroquine-susceptible and -resistant Plasmodium falciparum. (De, D.; et al. Am. J. Trop. Med. Hyg. 1996, 55, 579-583). In the studies reported here, we examined structure-activity relationships (SARs) among AQs with different N, N-diethyldiaminoalkane side chains and different substituents at the 7-position occupied by Cl in chloroquine. 7-Iodo- and 7-bromo-AQs with diaminoalkane side chains [-HN(CH2)2NEt2, -HN(CH2)3NEt2, or -HNCHMeCH2NEt2] were as active as the corresponding 7-chloro-AQs against both chloroquine-susceptible and -resistant P. falciparum (IC50s of 3-12 nM). In contrast, with one exception, 7-fluoro-AQs and 7-trifluoromethyl-AQs were less active against chloroquine-susceptible P. falciparum (IC50s of 15-50 nM) and substantially less active against chloroquine-resistant P. falciparum (IC50s of 18-500 nM). Furthermore, most 7-OMe-AQs were inactive against both chloroquine-susceptible (IC50s of 17-150 nM) and -resistant P. falciparum (IC50s of 90-3000 nM).
    [Abstract] [Full Text] [Related] [New Search]