These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Regulation of myeloid cell growth by distinct effectors of Ras. Author: Matsuguchi T, Kraft AS. Journal: Oncogene; 1998 Nov 26; 17(21):2701-9. PubMed ID: 9840934. Abstract: To examine the biochemical pathways by which activated Ha-Ras(G12V) (Ha-RasV12) induces factor-independent growth of myeloid cells, Ha-Ras effector loop mutations, including Y40C, T35S, and E37G, were analysed in a mouse factor-dependent myeloid cell line, WT19. Expression of a single effector loop mutant, Ha-Ras(G12V, Y40C) (Ha-RasV12C40), inhibited factor-withdrawal apoptosis, suggesting that activation of the phosphatidylinositol 3'-kinase (Pl3K) pathway is essential to prevent cell death. Neither Ha-Ras (G12V, T35S) (Ha-RasV12S35), which activates the Rafl signaling pathway, nor Ha-Ras(G12V, E37G) (Ha-RasV12G37), which stimulates the RalGDS pathway, did not have significant effects on factor-withdrawal apoptosis of myeloid cells. Although Ha-RasV12C40 inhibited apoptosis, it did not stimulate entry into the cell cycle. Cell lines containing the combination of Ha-RasV12G37 and Ha-RasV12C40 were capable of factor-independent cell growth, while expression of the other combinations of the Ha-Ras effector mutants were not. The combined expression of Bcl-2 and Ha-RasV12G37 was not sufficient to stimulate factor independent growth, suggesting that Ha-RasV12C40 activates additional signals, besides blocking apoptosis, which are critical for factor-independent growth of myeloid cells. In factor-starved myeloid cells, inducible expression of Ha-RasV12G37 results in decreased level of p27Kip1 protein, a cyclin-dependent kinase inhibitor (CKI). These data suggest that the factor-independent growth of myeloid cells requires the activation of at least two pathways, one inhibiting factor-withdrawal apoptosis, and another causing cell cycle progression.[Abstract] [Full Text] [Related] [New Search]