These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of the synthetic surfactant nonylphenol ethoxylate: a P-glycoprotein substrate in human urine. Author: Charuk MH, Grey AA, Reithmeier RA. Journal: Am J Physiol; 1998 Jun; 274(6):F1127-39. PubMed ID: 9841506. Abstract: P-glycoprotein (Mdr1p) is an ATP-dependent drug efflux pump that is overexpressed in multidrug-resistant cells and some cancers. Mdr1p is also expressed in normal tissues like the kidney, where it can mediate transepithelial drug transport. A human urinary compound that reverses multidrug resistance and blocks [3H]azidopine photolabeling of P-glycoprotein was purified to homogeneity and identified by 1H-NMR and mass spectrometry as the synthetic surfactant nonylphenol ethoxylate (NPE). Multidrug-resistant Chinese hamster ovary (CHO) C5 cells accumulated less [3H]NPE than parental drug-sensitive Aux-B1 cells, and Mdr1p substrates, verapamil and cyclosporin A, increased this surfactant's accumulation in C5 cells. NPE blocked the net transepithelial transport (basolateral to apical) of [3H]cyclosporin A in epithelia formed by Madin-Darby canine kidney (MDCK) cells. Net transepithelial transport (basal to apical) of [3H]NPE was demonstrated in MDCK cells and was inhibited by cyclosporin A. These findings show NPE is a Mdr1p substrate excreted into urine by kidney P-glycoprotein. NPE is a widely used surfactant and a known hormone disrupter that is readily absorbed orally or topically. The current findings indicate the function of kidney Mdr1p may be to eliminate exogenous compounds from the body.[Abstract] [Full Text] [Related] [New Search]