These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Author: Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. Journal: Plant Physiol; 1998 Dec; 118(4):1233-41. PubMed ID: 9847097. Abstract: The cDNA clone ERD5 (early responsive to dehydration), isolated from 1-h-dehydrated Arabidopsis, encodes a precursor of proline (Pro) dehydrogenase (ProDH), which is a mitochondrial enzyme involved in the first step of the conversion of Pro to glutamic acid. The transcript of the erd5 (ProDH) gene was undetectable when plants were dehydrated, but large amounts of transcript accumulated when plants were subsequently rehydrated. Accumulation of the transcript was also observed in plants that had been incubated under hypoosmotic conditions in media that contained L- or D-Pro. We isolated a 1.4-kb DNA fragment of the putative promoter region of the ProDH gene. The beta-glucuronidase (GUS) reporter gene driven by the 1.4-kb ProDH promoter was induced not only by rehydration but also by hypoosmolarity and L- and D-Pro at significant levels in transgenic Arabidopsis plants. The promoter of the ProDH gene directs strong GUS activity in reproductive organs such as pollen and pistils and in the seeds of the transgenic plants. GUS activity was detected in vegetative tissues such as veins of leaves and root tips when the transgenic plants were exposed to hypoosmolarity and Pro solutions. GUS activity increased during germination of the transgenic plants under hypoosmolarity. The relationship between Pro metabolism and the physiological aspects of stress response and development are discussed.[Abstract] [Full Text] [Related] [New Search]