These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Formation in vitro of an inhibitory cytochrome P450 x Fe2+-metabolite complex with roxithromycin and its decladinosyl, O-dealkyl and N-demethyl metabolites in rat liver microsomes.
    Author: Yamazaki H, Shimada T.
    Journal: Xenobiotica; 1998 Oct; 28(10):995-1004. PubMed ID: 9849646.
    Abstract:
    1. Roxithromycin and its major metabolites found in rat and human urine, namely the decladinosyl derivative (M1), O-dealkyl derivative (M2) and N-demethyl derivative (M3), were incubated with rat liver microsomes and formation of an inhibitory cytochrome P450 (CYP)-metabolite complex and of formaldehyde (measurement of N-demethylation) were determined in vitro. Troleandomycin and erythromycin were also used for comparison. 2. Dexamethasone very significantly induced the microsomal N-demethylations of these macrolide antibiotics. The order of magnitude for the Vmax/Km ratio of N-demethylations by liver microsomes from dexamethasone-treated rats was troleandomycin > erythromycin = M2 > roxithromycin > M3, M1. 3. Formation of an inhibitory P450 x Fe2+-metabolite complex was detected on incubation of these macrolide antibiotics with rat liver microsomes in the presence of an NADPH-generating system and the order of maximum complex formation was troleandomycin > erythromycin > M2 > roxithromycin > M3 > M1. 4. Troleandomycin, erythromycin and M2 inhibited CYP3A-dependent testosterone 6beta-hydroxylation catalysed by liver microsomes from the dexamethasone-treated rat by 54, 33 and 23%, respectively, but roxithromycin, M3 and M1 were very weak by comparison. In the untreated rat, only testosterone 6beta-hydroxylation, but not testosterone 16alpha- and 2alpha-hydroxylation and androstenedione formation, activities were inhibited, indicating that inhibitory actions of these antibiotics are specific for CYP3A enzymes in liver microsomes. 5. These results support the view that formation of an inhibitory P450-metabolite complex is prerequisite for the inhibition of CYP3A-dependent substrate oxidations by rat liver microsomes and that M2 (and M3, to a lesser extent) may be the active metabolite that can form an inhibitory P450-metabolite complex by CYP3A enzyme(s).
    [Abstract] [Full Text] [Related] [New Search]