These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glyceraldehyde-3-phosphate dehydrogenase inactivation by peroxynitrite.
    Author: Souza JM, Radi R.
    Journal: Arch Biochem Biophys; 1998 Dec 15; 360(2):187-94. PubMed ID: 9851830.
    Abstract:
    Rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was inactivated by peroxynitrite under biologically relevant conditions. The decrease of enzymatic activity followed an exponential function, and the concentration of peroxynitrite needed to inactivate 50% of 7 microM GAPDH (IC50) was 17 microM. Hydroxyl radical scavengers did not protect GAPDH from inactivation, but molecules that react directly with peroxynitrite such as cysteine, glutathione, or methionine and the substrate, glyceraldehyde 3-phosphate, afforded significant protection. Assuming simple competition kinetics between scavengers and the enzyme, we estimated a second-order rate constant of (2.5 +/- 0.5) x 10(5) M-1 s-1 at 25 degreesC and pH 7.4 for the GAPDH tetramer. The loss of enzyme activity was accompanied by protein thiol oxidation (two thiols oxidized per subunit) with only one critical thiol responsible of enzyme inactivation. Indeed, the pH profile of inactivation was consistent with the reaction of GAPDH sulfhydryls (GAPDH-SH) with peroxynitrite. Peroxynitrite-inactivated GAPDH was resistant to arsenite reduction and only 15% recovered by 20 mM dithiothreitol, suggesting that GAPDH-SH has been mainly oxidized to sulfinic or sulfonic acid, with a minor proportion yielding a disulfide. On the other hand, under anaerobic conditions the peroxynitrite precursor, nitric oxide (*NO), only slowly inactivated GAPDH with a rate constant of 11 M-1 s-1. The remarkable reactivity of the critical thiol group in GAPDH (Cys-149) toward peroxynitrite, which is one order of magnitude higher than that of previously studied sulfhydryls, indicate that it may constitute a preferential intracellular target for peroxynitrite.
    [Abstract] [Full Text] [Related] [New Search]