These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Role of isozyme group-specific sequence 4 in the isozyme-specific properties of human aldolase C. Author: Kusakabe T, Motoki K, Sugimoto Y, Hori K. Journal: Comp Biochem Physiol B Biochem Mol Biol; 1998 Aug; 120(4):665-73. PubMed ID: 9854814. Abstract: To assess which regions of the aldolase C molecule are required for exhibiting isozyme-specific kinetic properties, we have constructed nine chimeric enzymes of human aldolases A and C. Kinetic studies of these chimeric enzymes revealed that aldolase C absolutely required its own isozyme group-specific sequences (IGS), particularly IGS-4, for exhibiting the characteristics of aldolase C which differ significantly from those of isozymes A and B (Kusakabe T, Motoki K, Hori K. Human aldolase C: characterization of the recombinant enzyme expressed in Escherichia coli. J Biochem (Tokyo) 1994;115:1172-7). Whereas human aldolases A and B required their own isozyme group-specific sequences-1 and -4 (IGS-1 and -4) as the main determinants of isozyme-specific kinetic properties (Motoki K, Kitajima Y, Hori K. Isozyme-specific modules on human aldolase A molecule. J Biol Chem 1993;268:1677-83; Kusakabe T, Motoki K, Sugimoto Y, Takasaki Y, Hori K. Human aldolase B: liver-specific properties of the isoenzyme depend on type B isozyme group-specific sequence. Prot. Eng. 1994;7:1387-93), the present studies indicate that the IGS-1 is principally substitutable between aldolases A and C. The kinetic data also suggests that the connector-2 (amino acid residues 243-306) may modulate the interaction of IGS units with the alpha/beta barrel of the aldolase molecule.[Abstract] [Full Text] [Related] [New Search]