These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of the cornea-specific keratin 12 promoter by in vivo particle-mediated gene transfer.
    Author: Shiraishi A, Converse RL, Liu CY, Zhou F, Kao CW, Kao WW.
    Journal: Invest Ophthalmol Vis Sci; 1998 Dec; 39(13):2554-61. PubMed ID: 9856765.
    Abstract:
    PURPOSE: Keratin 12 (K12) is a cornea epithelial cell-specific intermediate filament component. To provide a better understanding of its expression, it is necessary to identify and characterize the promoter of Krt1.12 gene. METHODS: The 2.5-kb DNA 5' to Krt1.12 gene was sequenced. Krt1.12 promoter-beta-gal DNA constructs were prepared and used in vivo to transfect rabbit corneas, conjunctivas, and skin by particle-mediated gene transfer (Gene Gun). In vitro, the DNA constructs were transfected into cultured T-antigen-transformed rabbit corneal epithelial (RCE-T) cells and human fibrosarcoma HT-1080 fibroblasts with lipofectamine. The promoter activity was assessed by measuring beta-gal (beta-galactosidase) activity using histochemical staining with 5-Bromo-4-chloro-3-indolyl-beta-D-galactoside and enzyme assay with o-nitrophenyl beta-D-galactopyranoside. RESULTS: There are four Pax-6 pair box binding elements found between -910 and -2000 bp 5'-flanking the transcription initiation site of the Krt1.12 gene. None of promoter constricts can be expressed by HT-1080 cells. Cotransfection of Pax-6 cDNA with K12 promoter-beta-gal constructs containing Pax-6 elements results in a fourfold increase of beta-gal activities in RCE-T cells but not HT-1080 fibroblasts. The data of in vivo transfection in the rabbit by Gene Gun indicate that reporter gene constructs containing 0.6-kb and longer DNA fragments 5'-flanking Krt1.12 gene are effectively expressed in corneal, but not conjunctival or epidermal epithelial cells. CONCLUSIONS: The particle-mediated gene transfer is a suitable technique for in vivo delivery of transgenes to corneal epithelial cells. The 2.5-kb DNA fragment 5'-flanking Krt1.12 contains corneal epithelial cell-specific regulatory cis-DNA elements. Pax-6 is a positive transcription factor essential for keratin 12 expression.
    [Abstract] [Full Text] [Related] [New Search]