These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of p47(PHOX), a cytosolic subunit of the leukocyte NADPH oxidase. Phosphorylation of ser-359 or ser-370 precedes phosphorylation at other sites and is required for activity. Author: Johnson JL, Park JW, Benna JE, Faust LP, Inanami O, Babior BM. Journal: J Biol Chem; 1998 Dec 25; 273(52):35147-52. PubMed ID: 9857051. Abstract: The leukocyte NADPH oxidase catalyzes the reduction of oxygen to superoxide (O-2) at the expense of NADPH in phagocytes and B lymphocytes. The enzyme is dormant in resting cells but becomes active when the cells are exposed to appropriate stimuli. During oxidase activation, the highly basic cytosolic oxidase component p47(PHOX) becomes phosphorylated on several serines and migrates to the plasma membrane. We report here that p47(PHOX)-deficient B lymphoblasts expressing the p47(PHOX) S359A/S370A or p47(PHOX) S359K/S370K double mutation show dramatically reduced levels of enzyme activity and phosphorylation of p47(PHOX) as compared with the same cells expressing wild type p47(PHOX). In addition, these mutant p47(PHOX) proteins fails to translocate to the plasma membrane when the cells are stimulated. In contrast, normal phosphorylation and translocation are seen in mutants containing aspartate or glutamate at positions 359 and 370, but oxidase activity is still greatly reduced. These results imply that a negative charge at position 359 and/or 370 is sufficient to allow the phosphorylation and translocation of p47(PHOX) to take place but that features unique to a phosphorylated hydroxyamino acid are required to support O-2 production. These findings, plus those from an earlier study (Inanami, O., Johnson, J. L., McAdara, J. K., El Benna, J., Faust, L. P., Newburger, P. E., and Babior, B. M. (1998) J. Biol. Chem. 273, 9539-9543), suggest that oxidase activation requires 1) the sequential phosphorylation of at least two serines on p47(PHOX): Ser-359 or Ser-370, followed by Ser-303 or Ser-304; and 2) the translocation of p47(PHOX) to the membrane at some point after the first phosphorylation takes place.[Abstract] [Full Text] [Related] [New Search]