These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. Author: Humphrey AL, Saul AB. Journal: J Neurophysiol; 1998 Dec; 80(6):2991-3004. PubMed ID: 9862901. Abstract: Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure. J. Neurophysiol. 80: 2991-3004, 1998. Direction selectivity in simple cells of cat area 17 is linked to spatiotemporal (S-T) receptive-field structure. S-T inseparable receptive fields display gradients of response timing across the receptive field that confer a preferred direction of motion. Receptive fields that are not direction selective lack gradients; they are S-T separable, displaying uniform timing across the field. Here we further examine this link using a developmental paradigm that disrupts direction selectivity. Cats were reared from birth to 8 mo of age in 8-Hz stroboscopic illumination. Direction selectivity in simple cells was then measured using gratings drifting at different temporal frequencies (0.25-16 Hz). S-T structure was assessed using stationary bars presented at different receptive-field positions, with bar luminance being modulated sinusoidally at different temporal frequencies. For each cell, plots of response phase versus bar position were fit by lines to characterize S-T inseparability at each temporal frequency. Strobe rearing produced a profound loss of direction selectivity at all temporal frequencies; only 10% of cells were selective compared with 80% in normal cats. The few remaining directional cells were selective over a narrower than normal range of temporal frequencies and exhibited weaker than normal direction selectivity. Importantly, the directional loss was accompanied by a virtual elimination of S-T inseparability. Nearly all cells were S-T separable, like nondirectional cells in normal cats. The loss was clearest in layer 4. Normally, inseparability is greatest there, and it correlates well (r = 0.77) with direction selectivity; strobe rearing reduced inseparability and direction selectivity to very low values. The few remaining directional cells were inseparable. In layer 6 of normal cats, most direction-selective cells are only weakly inseparable, and there is no consistent relationship between the two measures. However, after strobe rearing, even the weak inseparability was eliminated along with direction selectivity. The correlated changes in S-T structure and direction selectivity were confirmed using conventional linear predictions of directional tuning based on responses to counterphasing bars and white noise stimuli. The developmental changes were permanent, being observed up to 12 yr after strobe rearing. The deficits were remarkably specific; strobe rearing did not affect spatial receptive-field structure, orientation selectivity, spatial or temporal frequency tuning, or general responsiveness to visual stimuli. These results provide further support for a critical role of S-T structure in determining direction selectivity in simple cells. Strobe rearing eliminates directional tuning by altering the timing of responses within the receptive field.[Abstract] [Full Text] [Related] [New Search]