These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A membrane-bound NAD(P)+-reducing hydrogenase provides reduced pyridine nucleotides during citrate fermentation by Klebsiella pneumoniae.
    Author: Steuber J, Krebs W, Bott M, Dimroth P.
    Journal: J Bacteriol; 1999 Jan; 181(1):241-5. PubMed ID: 9864336.
    Abstract:
    During anaerobic growth of Klebsiella pneumoniae on citrate, 9.4 mmol of H2/mol of citrate (4-kPa partial pressure) was formed at the end of growth besides acetate, formate, and CO2. Upon addition of NiCl2 (36 microM) to the growth medium, hydrogen formation increased about 36% to 14.8 mmol/mol of citrate (6 kPa), and the cell yield increased about 15%. Cells that had been harvested and washed under anoxic conditions exhibited an H2-dependent formation of NAD(P)H in vivo. The reduction of internal NAD(P)+ was also achieved by the addition of formate. In crude extracts, the H2:NAD+ oxidoreductase activity was 0.13 micromol min-1 mg-1, and 76% of this activity was found in the washed membrane fraction. The highest specific activities of the membrane fraction were observed in 50 mM potassium phosphate, with 1.6 micromol of NADPH formed min-1 mg-1 at pH 7.0 and 1.7 micromol of NADH formed min-1 mg-1 at pH 9.5. In the presence of the protonophore carbonyl cyanide m-chlorophenylhydrazone and the Na+/H+ antiporter monensin, the H2-dependent reduction of NAD+ by membrane vesicles decreased only slightly (about 16%). The NADP+- or NAD+-reducing hydrogenases were solubilized from the membranes with the detergent lauryldimethylamine-N-oxide or Triton X-100. NAD(P)H formation with H2 as electron donor, therefore, does not depend on an energized state of the membrane. It is proposed that hydrogen which is formed by K. pneumoniae during citrate fermentation is recaptured by a novel membrane-bound, oxygen-sensitive H2:NAD(P)+ oxidoreductase that provides reducing equivalents for the synthesis of cell material.
    [Abstract] [Full Text] [Related] [New Search]