These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Studies on the lithium transport across the red cell membrane. I. Li+ uphill transport by the Na+-dependent Li+ counter-transport system of human erythrocytes.
    Author: Duhm J, Eisenried F, Becker BF, Greil W.
    Journal: Pflugers Arch; 1976 Jul 30; 364(2):147-55. PubMed ID: 986623.
    Abstract:
    Li+ net-transfer across cell membranes was studied on human erythrocytes and ghosts preloaded with 1-2 mM Li+ and incubated in saline media of varying composition at initial thermodynamic equilibrium for Li+. The following results were obtained: 1. Li+ is extruded from glycolyzing erythrocytes against an electrochemical gradient until a steady-state Li+ distribution is established after 24-28 h. 2. The initial rate of Li+ extrusion is not altered by ouabain or by reduction of ATP levels to less than 25% of the normal value. 3. Replacement of external Na+ by K+ or choline+ abolishes the establishment of an electrochemical Li+ gradient. 4. The Li+ distribution ratio Lie+/Lii+ increases proportional to the ratio Nae+/Nai+ at constant extravellular K+ concentrations. 5. In ghost suspension an uphill Li+ transport is driven by an oppositely directed Na+ gradient. The direction of the Li+ uphill transport can be reversed by reversing the Na+ gradient. From the results it is concluded that the Li+ uphill transport across human red cell membranes is mediated by a Na+-dependent Li+ counter-transport system. This system is not inhibited by ouabain and does not appear to be identical to the Na+-Na+ exchange system described by Garrahan and Glynn.
    [Abstract] [Full Text] [Related] [New Search]