These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bile acid feeding induces cholangiocyte proliferation and secretion: evidence for bile acid-regulated ductal secretion. Author: Alpini G, Glaser SS, Ueno Y, Rodgers R, Phinizy JL, Francis H, Baiocchi L, Holcomb LA, Caligiuri A, LeSage GD. Journal: Gastroenterology; 1999 Jan; 116(1):179-86. PubMed ID: 9869616. Abstract: BACKGROUND & AIMS: We have shown that taurocholate (TC) and taurolithocholate (TLC) interact in vitro with normal cholangiocytes, increasing DNA synthesis, secretin receptor (SR) gene expression, and adenosine 3',5'-cyclic monophosphate (cAMP) synthesis. To further extend these in vitro studies, we tested the hypothesis that bile acids (BAs) directly stimulate cholangiocyte proliferation and secretion in vivo. METHODS: After feeding with TC or TLC (1% for 1-4 weeks), we assessed the following in vivo: (1) ductal proliferation by both morphometry and immunohistochemistry for proliferating cell nuclear antigen (PCNA) and measurement of [3H]thymidine incorporation; and (2) the effect of secretin on bile secretion and bicarbonate secretion in vivo. Genetic expression of H3-histone and SR and intracellular cAMP levels were measured in isolated cholangiocytes. RESULTS: After BA feeding, there was an increased number of PCNA-positive cholangiocytes and an increased number of ducts compared with control rats. [3H]Thymidine incorporation, absent in control cholangiocytes, was increased in cholangiocytes from BA-fed rats. In BA-fed rats, there was increased SR gene expression (approximately 2.5-fold) and secretin-induced cAMP levels (approximately 3.0-fold) in cholangiocytes, which was associated with de novo secretin-stimulated bile flow and bicarbonate secretion. CONCLUSIONS: These data indicate that elevated BA levels stimulate ductal secretion and cholangiocyte proliferation.[Abstract] [Full Text] [Related] [New Search]