These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interleukin-10 stabilizes inhibitory kappaB-alpha in human monocytes. Author: Shames BD, Selzman CH, Meldrum DR, Pulido EJ, Barton HA, Meng X, Harken AH, McIntyre RC. Journal: Shock; 1998 Dec; 10(6):389-94. PubMed ID: 9872676. Abstract: Interleukin-10 (IL-10) protects animals from lethal endotoxemia. This beneficial effect is mediated, in part, by inhibition of inflammatory cytokine production, including tumor necrosis factor-alpha (TNF-alpha). Evidence suggests that IL-10 may inhibit activation of the transcription factor nuclear factor-kappaB (NF-kappaB) through an unknown mechanism. NF-kappaB activation in response to inflammatory signals is dependent upon degradation of its associated inhibitory peptide, inhibitory kappaB-alpha (IkappaB-alpha). We hypothesized that IL-10 prevents human monocyte NF-kappaB activation and resultant TNF-alpha production by stabilization of IkappaB-alpha. The purpose of this study was to determine the effect of IL-10 on lipopolysaccharide (LPS)-induced human monocyte TNF-alpha production, NF-kappaB activation, and IkappaB-alpha degradation. Monocytes were isolated from human donors. Cells were stimulated with endotoxin (LPS, 100 ng/mL) with and without human IL-10 (10 ng/mL). Following stimulation, TNF-alpha was measured in cell supernatants by ELISA, NF-kappaB activity by electrophoretic mobility shift assay, and IkappaB-alpha levels by Western blot. We observed that after LPS stimulation of human monocytes, TNF-alpha increased to 798+/-67 pg/mL (p < .001 versus control). IL-10 attenuated LPS-stimulated TNF-alpha production (297+/-54; p < .001 versus LPS alone). After LPS stimulation in human monocytes, IkappaB-alpha protein levels decreased, and NF-kappaB DNA binding increased. IL-10 pretreatment prevented LPS-induced decreases in IkappaB-alpha protein levels and attenuated NF-kappaB DNA binding. IL-10 appears to prevent activation of NF-kappaB by preserving IkappaB-alpha protein levels, leading to a reduction in TNF-alpha release.[Abstract] [Full Text] [Related] [New Search]