These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Interleukin-1-induced nuclear factor-kappaB-IkappaBalpha autoregulatory feedback loop in hepatocytes. A role for protein kinase calpha in post-transcriptional regulation of ikappabalpha resynthesis.
    Author: Han Y, Meng T, Murray NR, Fields AP, Brasier AR.
    Journal: J Biol Chem; 1999 Jan 08; 274(2):939-47. PubMed ID: 9873035.
    Abstract:
    The IkappaB inhibitors regulate the activity of the potent transcription factor nuclear factor-kappaB (NF-kappaB). Following signal-induced IkappaB proteolysis, NF-kappaB translocates into the nucleus to activate transcription of target genes, including IkappaBalpha itself, initiating the "NF-kappaB-IkappaBalpha autoregulatory feedback loop." Upon IkappaBalpha resynthesis, NF-kappaB is subsequently inactivated and redistributed back into the cytoplasm. We have previously reported a robust NF-kappaB-IkappaBalpha autoregulatory feedback loop in HepG2 hepatocytes. Sixty minutes after tumor necrosis factor (TNF-alpha) stimulation, IkappaBalpha is resynthesized to approximately 2-fold greater level than in control cells and completely inhibits NF-kappaB binding. Here we investigate the mechanism for IkappaBalpha resynthesis comparing the effect of stimulation of TNF-alpha with that of interleukin-1 (IL-1alpha). Although either TNF-alpha or IL-1alpha stimulation of protein kinase C (PKC)-down-regulated cells equivalently induces NF-kappaB translocation, the kinetics of IkappaBalpha resynthesis is slowed. Moreover, pretreatment with selective calcium-dependent PKC inhibitors selectively slowed the kinetics of the IL-1alpha-induced overshoot without affecting that produced by TNF-alpha. Down-regulation of PKCalpha by antisense phosphorothioate oligonucleotides and expression vectors selectively blocked the IL-1alpha-induced IkappaBalpha overshoot. In the absence of PKCalpha, although IL-1alpha induced similar amounts of IkappaBalpha transcription and changes in steady-state mRNA, a greater component of IkappaBalpha mRNA was retained in the nucleus. These data indicate a selective role for PKCalpha in IL-1alpha-induced IkappaBalpha resynthesis, which is mediated, at least in part, by post-transcriptional control of mRNA export.
    [Abstract] [Full Text] [Related] [New Search]