These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Analysis of RNA-dependent RNA polymerase structure and function as guided by known polymerase structures and computer predictions of secondary structure. Author: O'Reilly EK, Kao CC. Journal: Virology; 1998 Dec 20; 252(2):287-303. PubMed ID: 9878607. Abstract: RNA-dependent RNA polymerases (RdRps) function as the catalytic subunit of the viral replicase required for the replication of all positive strand RNA viruses. The vast majority of RdRps have been identified solely on the basis of sequence similarity. Structural studies of RdRps have lagged behind those of the DNA-dependent DNA polymerases, DNA-dependent RNA polymerases, and reverse transcriptases until the recent report of the partial crystal structure of the poliovirus RdRp, 3Dpol [Hansen, J. L., et al. (1997). Structure 5, 1109-1122]. We seek to address whether all RdRps will have structures similar to those found in the poliovirus polymerase structure. Therefore, the PHD method of Rost and Sander [Rost, B., and Sander, C. (1993a). J. Mol. Biol. 232, 584-599; Rost, B., and Sander, C. (1994). Protein 19, 55-77] was used to predict the secondary structure of the RdRps from six different viral families: bromoviruses, tobamoviruses, tombusvirus, leviviruses, hepatitis C-like viruses, and picornaviruses. These predictions were compared with the known crystal structure of the poliovirus polymerase. The PHD method was also used to predict picornavirus structures in places in which the poliovirus crystal structure was disordered. All five families and the picornaviruses share a similar order of secondary structure elements present in their polymerase proteins. All except the leviviruses have the unique region observed in the poliovirus 3Dpol that is suggested to be involved in polymerase oligomerization. These structural predictions are used to explain the phenotypes of a collection of mutations that exist in several RNA polymerases. This analysis will help to guide further characterization of RdRps.[Abstract] [Full Text] [Related] [New Search]