These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Spontaneous mutations in the Big Blue transgenic system are primarily mouse derived.
    Author: Hill KA, Buettner VL, Glickman BW, Sommer SS.
    Journal: Mutat Res; 1999 Jan; 436(1):11-9. PubMed ID: 9878678.
    Abstract:
    The Big Blue transgenic mouse mutation detection system provides a powerful approach for measuring spontaneous and induced mutations in vivo. The observed mutations may contain a fraction of ex vivo or prokaryotic mutational events. Indeed, a modified, selectable form of the Big Blue assay seem to generate artifactual mutants under certain circumstances. Herein we review the evidence that circular mutants (i.e., the plaque circumference is at least 50% blue) collected in the standard Big Blue assay are derived primarily from the mouse. The most direct evidence is the similarity in the types of mutations found in jackpot and nonjackpot mutations. In addition, about half of the spontaneous mutations in the lacI transgene are transitions and transversions at CpG dinucleotides, a mammalian-specific feature. The mutation pattern observed at lacI is consistent with AT mutation pressure operating in a GC rich DNA and approaches that reported for observed germline human factor IX mutations. Furthermore, the spontaneous mutation pattern of circular Big Blue mutants differs significantly from that of an endogenous lacI gene in E. coli. Pinpoint mutants (a dot of blue color peripherally located in a wild type plaque), which a priori were not expected to be mouse-derived, have a mutation pattern consistent with the mutation pattern of an endogenous E. coli lacI gene. Analysis of induced mutagenesis studies reveals mutation frequencies and patterns for the Big Blue circular mutants which are comparable to endogenous genes. In reconstruction experiments, blue plaques derived from a superinfection with wild type and mutant phage produced approximately 50% blue and 50% clear plaques on replating. This phenomenon has not been seen when plaques derived from mouse were replated in the Big Blue assay. Collectively, the evidence strongly supports a murine origin for circular mutants recovered in the standard Big Blue assay. Validation of current assays is an essential step in determining the frequency and pattern of spontaneous murine-specific mutations. Defining this benchmark will be helpful in evaluating the next generation of transgenic mutation detection systems.
    [Abstract] [Full Text] [Related] [New Search]