These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neuropeptides in insect sensory neurones: tachykinin-, FMRFamide- and allatotropin-related peptides in terminals of locust thoracic sensory afferents.
    Author: Persson MG, Nässel DR.
    Journal: Brain Res; 1999 Jan 16; 816(1):131-41. PubMed ID: 9878709.
    Abstract:
    Sensory afferents in the thoracic ganglia of the locust Locusta migratoria were labelled with antisera to different neuropeptides: locustatachykinins, FMRFamide and allatotropin. The locustatachykinin-immunoreactive (LTKIR) sensory fibres were derived from the legs and entered the ventral sensory neuropil of each of the thoracic ganglia via nerve 5. In the thoracic neuropil, the LTKIR sensory fibres formed a distinct plexus of terminations ventrally in the ipsilateral hemisphere. The peripheral cell bodies of the sensory neurones could not be revealed, but lesion experiments indicated that origin of the LTKIR fibres was the tarsus of each leg. Possibly the thin fibres are from tarsal chemoreceptors. Double labelling immunocytochemistry revealed that all the LTKIR sensory fibres contained colocalized FMRFamide immunoreactivity. A larger population of sensory fibres reacted with antiserum to moth (Manduca sexta) allatotropin. By means of double labelling immunocytochemistry, we could show that the LTKIR fibres constituted a subpopulation of the larger set of allatotropin-like immunoreactive fibres. Thus some sensory fibres may contain colocalized peptides related to locustatachykinins, FMRFamide-related peptide(s) and allatotropin-like peptide. A separate non-overlapping small set of sensory fibres in nerve 5 reacted with an antiserum to serotonin. Sensory fibres of the other nerves of the ventral nerve cord, including the abdominal ganglia, did not react with the peptide antisera. Since acetylcholine is the likely primary neurotransmitter of insect sensory fibres, it is possible that the peptides and serotonin are colocalized with this transmitter and serve modulatory functions in a subset of the leg afferents.
    [Abstract] [Full Text] [Related] [New Search]