These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of systemic resiniferatoxin treatment on substance P mRNA in rat dorsal root ganglia and substance P receptor mRNA in the spinal dorsal horn.
    Author: Szallasi A, Farkas-Szallasi T, Tucker JB, Lundberg JM, Hökfelt T, Krause JE.
    Journal: Brain Res; 1999 Jan 09; 815(2):177-84. PubMed ID: 9878727.
    Abstract:
    Capsaicin depletes the sensory neuropeptide substance P (SP) in the rat due to a combination of neuron loss and decreased synthesis in the surviving cells. Resiniferatoxin (RTX) mimics most, but not all, capsaicin actions. In the present study, the effects of RTX (300 microg/kg, s.c.) were examined on mRNA levels for SP and its receptor in the adult rat. The percentage of dorsal root ganglia (DRG) neuronal profiles showing an in situ hybridization signal for preprotachykinin mRNAs encoding SP was not altered following RTX treatment (up to 8 weeks), though the signal became perceptibly weaker. In accord, 2 weeks after RTX administration a 60% decrease was observed in the steady-state levels of SP-encoding mRNAs using Northern blot analysis, leaving the ratio of beta- and gamma-preprotachykinin mRNAs unchanged. No change was, however, observed in mRNA levels encoding tachykinins NK-1 receptors in the dorsal horn, the spinal targets for SP. The present findings suggest that RTX does not kill SP-positive DRG neurons, though it suppresses the synthesis of SP. Since RTX treatment does not alter NK-1 receptor expression, this reduced SP synthesis is likely to play a central role in the analgesic actions of RTX.
    [Abstract] [Full Text] [Related] [New Search]