These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Two modes of microtubule-associated protein 1B phosphorylation are differentially regulated during peripheral nerve regeneration. Author: Ramón-Cueto A, Avila J. Journal: Brain Res; 1999 Jan 09; 815(2):213-26. PubMed ID: 9878743. Abstract: Two major modes of MAP1B phosphorylation (I and II), respectively recognized by monoclonal antibodies 150 and 125, have been related to remodeling and formation of processes in the mature nervous system. To gain insight into the cytoskeletal modifications underlying peripheral nerve regeneration, the pattern of expression of both MAP1B phosphorylated modes was studied during this process. Sciatic nerves from adult Wistar rats were crushed and animals allowed to survive for 5, 7, 10 or 14 days. After those survival periods, damaged and undamaged sciatic nerves, dorsal root ganglia (DRG), and spinal cords, were subjected to immunohistochemistry and Western blot, using antibodies 150 and 125. At all survival periods analysed, MAP1B phosphorylated at mode I was concentrated at the distal region of regenerating nerves whereas mode II phosphorylation underwent an overall decrease in regenerating axons that was less evident in more proximal nerve regions. Very high levels of MAP1B phosphorylated at mode II were detected in the bodies of DRG neurons and in bodies and dendrites of spinal motor neurons. This phosphorylation mode was also encountered in some Schwann cells and oligodendroglia associated with more proximal regions of regenerating axons. In this study we conclude that MAP1B was differentially phosphorylated depending on the cell type, subcellular compartment and stage of the regenerative process and discuss the possible functional implications that differential expression of each MAP1B phosphorylation mode might have during nerve regeneration.[Abstract] [Full Text] [Related] [New Search]