These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synaptic reorganization in explanted cultures of rat hippocampus. Author: Gutiérrez R, Heinemann U. Journal: Brain Res; 1999 Jan 09; 815(2):304-16. PubMed ID: 9878801. Abstract: Due to loss of afferent innervation, synaptic reorganization occurs in organotypic hippocampal slice cultures. With extra- and intracellular recordings, we confirm that the excitatory loop from the dentate gyrus (DG) to CA3 and further to CA1 is preserved. However, hilar stimulation evoked antidromic population spikes in the DG which were followed by a population postsynaptic potential (PPSP); intracellularly, an antidromic spike with a broad shoulder or EPSP/IPSP sequences were induced. Synaptic responses were blocked by glutamate receptor antagonists. Stimulation of CA1 induced a PPSP in DG. Dextranamine stained pyramidal cells of CA1 were shown to project to DG. After removal of area CA3, DG's and mossy fibers' (MF) stimulation still elicited PPSPs and EPSP/IPSP sequences in area CA1 which disappeared when a cut was made through the hippocampal fissure. During bicuculline perfusion, hilar stimulation caused EPSPs in granule cells and spontaneous and evoked repetitive firing appeared even after its isolation from areas CA3 and CA1. Collateral excitatory synaptic coupling between granule cells was confirmed by paired recordings. Besides the preservation of the trisynaptic pathway in this preparation, new functional synaptic contacts appear, presumably due to MF collateral sprouting and formation of pathways between areas CA1 and DG.[Abstract] [Full Text] [Related] [New Search]