These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of intracellular calcium on the modulation of naloxone-precipitated withdrawal jumping in morphine-dependent mice by diabetes.
    Author: Ohsawa M, Kamei J.
    Journal: Brain Res; 1999 Jan 09; 815(2):424-30. PubMed ID: 9878862.
    Abstract:
    The role of intracellular calcium in the modifications of naloxone-precipitated withdrawal jumping in morphine-dependent mice by diabetes was examined. Naloxone-precipitated withdrawal jumping was significantly less in morphine-dependent diabetic mice than in morphine-dependent non-diabetic mice. Intracerebroventricular (i.c.v. ) pretreatment with ryanodine attenuated naloxone-precipitated withdrawal jumping in morphine-dependent non-diabetic mice. However, naloxone-precipitated withdrawal jumping in morphine-dependent diabetic mice was not affected by i.c.v. pretreatment with ryanodine. Moreover, i.c.v. pretreatment with thapsigargin, a Ca2+-ATPase inhibitor, enhanced naloxone-precipitated withdrawal jumping in morphine-dependent non-diabetic mice, but not in morphine-dependent diabetic mice. The noradrenaline (NA) turnover in the frontal cortex in morphine-dependent non-diabetic mice, but not in morphine-dependent diabetic mice, was significantly increased by naloxone injection. Naloxone-induced enhancement of NA turnover in morphine-dependent non-diabetic mice, but not in morphine-dependent diabetic mice, was blocked by i.c.v. pretreatment with ryanodine. In contrast to ryanodine, thapsigargin enhanced naloxone-induced enhancement of NA turnover in morphine-dependent non-diabetic mice. These results suggest that increased intracellular calcium augmented naloxone-precipitated withdrawal jumping and the turnover rate of NA in the frontal cortex in morphine-dependent non-diabetic mice. Furthermore, it seems likely that the attenuation of naloxone-precipitated withdrawal jumping in morphine-dependent diabetic mice may be due, in part, to the dysfunction of intracellular calcium store.
    [Abstract] [Full Text] [Related] [New Search]