These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Source localization of P300 from oddball, single stimulus, and omitted-stimulus paradigms. Author: Tarkka IM, Stokic DS. Journal: Brain Topogr; 1998; 11(2):141-51. PubMed ID: 9880172. Abstract: Three different auditory stimulus paradigms were used to elicit P300 potentials. Normal subjects were tested on the classical rare target stimulus, single-stimulus and omitted-stimulus conditions. Noninvasive identification of the cerebral sources of the event-related potentials (ERPs) was performed using spatio-temporal multiple dipole modeling (BESA software) with individually sized spherical head models. The grand average data of each condition was first independently modeled and these models were used as starting values for modeling each individual subject's data. Models for the rare-stimulus condition and single-stimulus condition both consisted of 6 dipoles. Models for the omitted-stimulus condition consisted of 2 dipoles. The dipole locations of the final individual 6-dipole models for the rare and single-stimulus conditions did not differ significantly from each other or from one previous result obtained from a another group of subjects (Tarkka et al. 1995). Super-imposition of the dipole coordinates on the sterotaxic brain atlas suggests that bilateral deep medial temporal lobe structures are the major contributors to rare and single-stimulus P300s. Because both the wave form morphology and the source model of the P300 elicited by single stimulus were close to those of the rare-stimulus P300 it may be that the underlying neural mechanisms eliciting these P300 potentials are essentially the same.[Abstract] [Full Text] [Related] [New Search]