These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Glutamic acid decarboxylase T lymphocyte responses associated with susceptibility or resistance to type I diabetes: analysis in disease discordant human twins, non-obese diabetic mice and HLA-DQ transgenic mice. Author: Boyton RJ, Lohmann T, Londei M, Kalbacher H, Halder T, Frater AJ, Douek DC, Leslie DG, Flavell RA, Altmann DM. Journal: Int Immunol; 1998 Dec; 10(12):1765-76. PubMed ID: 9885897. Abstract: Glutamic acid decarboxylase (GAD65) has been implicated as a targeted self antigen in the immune destruction of pancreatic beta cells. T cell responses to GAD65 peptides have been detected in both patients with type I diabetes and in the non-obese diabetic (NOD) mouse. To establish which GAD65 epitopes are important in the immunopathogenesis of disease we initially compared T cell responses to GAD65 epitopes in conditions of disease susceptibility and protection. T cell responses to GAD65 peptides were measured in monozygotic twin pairs selected on the basis of disease discordance and T cell recognition of immunogenic regions of GAD65. Peptides of interest were then used to immunize susceptible NOD mice and H2-E transgenic NOD mice which are protected from diabetes. A differential response to the epitope GAD65 521-535 discriminated diabetic from non-diabetic human twins as well as susceptible from protected mice. This epitope as well as GAD 505-519 induces T cell responses despite binding the type I diabetes associated HLA-DQA1*0301/DQB1*0302 product with low affinity. Since DQ-restricted T cell responses are difficult to study in humans, HLA-DQ8 transgenic mice were then used: GAD epitopes 521-535 and 505-519 induced responses in DQ8 transgenic mice and T cell lines were established. Long-term T cell lines against GAD 505-519 were HLA-DQ restricted, and responded to peptide with a strong IFN-gamma and IL-10 response. The findings implicate GAD 521-535 as a possible target peptide in pathogenesis and are compatible with a model whereby self-reactive T cells specific for low-affinity peptide-MHC complexes may escape thymic negative selection.[Abstract] [Full Text] [Related] [New Search]