These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multi-variant analysis of otoacoustic emissions and estimation of hearing thresholds: transient evoked otoacoustic emissions.
    Author: Vinck BM, Van Cauwenberge PB, Corthals P, De Vel E.
    Journal: Audiology; 1998; 37(6):315-34. PubMed ID: 9888189.
    Abstract:
    Evaluation of cochlear hearing loss by means of transiently evoked otoacoustic emissions is already established in clinical practice. However, accurate prediction of pure-tone thresholds is still questioned and is still regarded as troublesome. Both click- and tone-burst-evoked otoacoustic emissions at several intensity levels were measured and analysed in 157 ears from normally hearing and 432 ears from patients with different degrees of pure sensory hearing loss using the ILO88/92 equipment. Results of otoacoustic emissions (OAE), elicited by clicks and tone-bursts at centre frequencies from 1 to 5 kHz, were analysed using two different statistical methods. Both multivariate discriminant analysis and forward multiple regression analysis were used to determine which OAE variables were most discriminating and best at predicting hearing thresholds. We found that a limited set of variables obtained from both tone-burst and click measurements can accurately predict and categorize hearing loss levels up to a limit of 60 dB HL. We found correct classification scores of pure-tone thresholds between 500 and 4000 Hz up to 100 per cent when using combined click and tone-burst otoacoustic measurements. Prediction of pure-tone thresholds was correct with a maximum estimation error of 10 dB for audiometric octave frequencies between 500 and 4000 Hz. Measurements of multiple tone-bursts OAEs have a significant clinical advantage over the use of clicks alone for clinical applications, and a good classification and prediction of pure-tone thresholds with otoacoustic emissions is possible.
    [Abstract] [Full Text] [Related] [New Search]