These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determination by photoreduction of flip-flop kinetics of spin-labeled stearic acids across phospholipid bilayers.
    Author: Yuann JM, Morse RD.
    Journal: Biochim Biophys Acta; 1999 Jan 12; 1416(1-2):135-44. PubMed ID: 9889351.
    Abstract:
    Spin-labeled stearic acid derivatives (N-DS) can be used to determine the rate at which lipid-derived drugs can cross a phospholipid bilayer (flip-flop). The flip-flop rate of N-DS (where N=5, 6, 7, 9, 10, 12, 16), was measured using vectorial photoreduction of nitroxides to their corresponding hydroxylamine by FMN, a charged, membrane-impermeable flavin, by hydrogen atom transfer from EDTA. From the time difference in the photoreduction rates of N-DS located in the outer and inner half of the bilayer, the flip-flop rate of N-DS across the bilayer can be determined. The results show that at pH 8.0 or lower, the photoreduction of 5-DS on one side of the membrane by FMN is slower than the flip-flop rate of 5-DS across phospholipid bilayers. For 5-DS at pH 7.0, this rate is at least 33.8+/-4.24 s or faster. Stearic acids with the spin label at different positions along the acyl chain (N=5, 6, 7, 9, 10, 12) have similar flip-flop rates in the liposomes at pH 7.0 although 16-DS is slower, probably due to the inaccessibility of the nitroxide moiety to FMN. It is most likely that the fast distribution of 5-DS in cells is due to the fast movement of acidic form, but not the salt form, of 5-DS across membrane bilayers. The oxazolidine (nitroxide moiety) does not seem to affect the pKa ( approximately 8.3) of stearic acid at air-water interface. Thus, N-DS are good probes for studying the distribution kinetics of stearic acid derivatives in biological systems.
    [Abstract] [Full Text] [Related] [New Search]