These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Skeletal muscle regulatory proteins enhance F-actin in vitro motility.
    Author: Gordon AM, Chen Y, Liang B, LaMadrid M, Luo Z, Chase PB.
    Journal: Adv Exp Med Biol; 1998; 453():187-96; discussion 196-7. PubMed ID: 9889829.
    Abstract:
    Using an in vitro motility assay, we have investigated the effects of rabbit skeletal muscle regulatory proteins, troponin and tropomyosin, on the gliding of F-actin filaments or F-actin filaments containing these regulatory proteins. We demonstrate that Ca2+ does not affect the motility of F-actin gliding on HMM, but does in the presence of skeletal muscle tropomyosin and troponin. We conclude that Ca2+ affects motility through troponin because, like F-actin, F-actin-Tm filaments show no Ca(2+)-dependence to their gliding speeds. Furthermore, there is a large enhancement of the gliding speed (about 75%) in the presence of skeletal muscle tropomyosin, troponin + saturating Ca2+ over that seen with F-actin filaments. This enhancement is not due to the action of tropomyosin alone as skeletal muscle tropomyosin without troponin enhances the speed little (about 5%) over that of F-actin. Thus troponin confers Ca2+ sensitivity to the motility and, additionally, potentiates motility greatly along with tropomyosin in the presence of saturating Ca2+. When [HMM] is varied, the decline in speed of F-actin seen at low HMM density is changed little by tropomyosin in the F-actin-Tm filaments. These data show that the skeletal regulatory proteins interact with F-actin to enhance the interaction with HMM particularly in the presence of troponin and saturating Ca2+ and enhance the gliding speed in the in vitro motility assay as they potentiate the ATPase activity in the isolated proteins. This enhancement of speed in the motility assay cannot be ascribed to tropomyosin alone.
    [Abstract] [Full Text] [Related] [New Search]