These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Elevated myocardial cytosolic calcium impairs insulin-like growth factor-1-stimulated protein synthesis in chronic renal failure.
    Author: Qing DP, Ding H, Vadgama J, Wu YY, Kopple JD.
    Journal: J Am Soc Nephrol; 1999 Jan; 10(1):84-92. PubMed ID: 9890313.
    Abstract:
    Rats and humans with chronic renal failure (CRF) are reported to have resistance to recombinant human insulin-like growth factor-1 (rhIGF-1). Because basal cytosolic calcium ([Ca2+]i), a second messenger, may be increased in CRF, this study was conducted to examine whether elevated basal [Ca2+]i may cause resistance to IGF-1. Cardiomyocytes from four groups of rats were studied: untreated CRF, CRF with parathyroidectomy (PTX), CRF with the calcium channel blocker felodipine (F), and sham operation of the kidney (SO). CRF was created by ligation of two-thirds of the left renal artery and contralateral nephrectomy. Rats from each group were pair-fed the same diet for 20 to 22 d. Basal [Ca2+]i in cardiomyocytes (nM) in the CRF rats (102.0 +/- 2.8; SEM), was significantly higher than in each of the CRF-PTX, CRF-F, and SO groups (65.2 +/- 1.9, 63.8 +/- 2.6, and 63.5 +/- 2.0, respectively; P < 0.01). rhIGF-1 increased cardiomyocyte [Ca2+]i in all four groups of rats. The rise in [Ca2+]i was significantly diminished in the CRF rats (P < 0.05) and did not differ among the CRF-PTX, CRF-F, and SO rats. Protein synthesis after incubation with 0, 50, 100, 200, or 400 ng/ml rhIGF-1 was lower in cardiomyocytes from CRF rats than in each of the other three groups (P < 0.05) and was significantly less in the CRF-F rats compared with SO animals. IGF-1 receptor mRNA and IGF-1 receptor number and affinity were not different among the four groups. These findings suggest that cardiomyocytes from CRF rats display elevated basal [Ca2+]i and attenuated rhIGF-1-induced increase in [Ca2+]i; basal protein synthesis is decreased, and IGF-1-stimulated protein synthesis is impaired; elevated basal [Ca2+]i seems to contribute to this diminished response to rhIGF-1.
    [Abstract] [Full Text] [Related] [New Search]