These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dynamics study on the anti-human immunodeficiency virus chemokine viral macrophage-inflammatory protein-II (VMIP-II) reveals a fully monomeric protein. Author: LiWang AC, Cao JJ, Zheng H, Lu Z, Peiper SC, LiWang PJ. Journal: Biochemistry; 1999 Jan 05; 38(1):442-53. PubMed ID: 9890927. Abstract: Encoded by Kaposi's sarcoma-associated herpesvirus, viral macrophage-inflammatory protein-II (VMIP-II) is unique among CC chemokines in that it has been shown to bind to the CXC chemokine receptor CXCR4 as well as to a variety of CC chemokine receptors. This unique binding ability allows vMIP-II to block infection by a wide range of human immunodeficiency virus type I (HIV-1) strains, but the structural and dynamic basis for this broad range of binding is not known. 15N T1, T2 and 15N[-HN] nuclear Overhauser effect (NOE) values of vMIP-II, determined through a series of heteronuclear multidimensional nuclear magnetic resonance (NMR) experiments, were used to obtain information about the backbone dynamics of the protein. Whereas almost all chemokine structures reveal a dimer or multimer, vMIP-II has a rotational correlation time (tauc) of 4.7 +/- 0.3 ns, which is consistent with a monomeric chemokine. The rotational diffusion anisotropy, D parallel/D perpendicular, is approximately 1.5 +/- 0.1. The conformation of vMIP-II is quite similar to other known chemokines, containing an unstructured N-terminus followed by an ordered turn, three beta-strands arranged in an antiparallel fashion, and one C-terminal alpha-helix that lies across the beta-strands. Most of the protein is well-ordered on a picosecond time scale, with an average order parameter S2 (excluding the N-terminal 13 amino acids) of 0.83 +/- 0. 09, and with even greater order in regions of secondary structure. The NMR data reveal that the N-terminus, which in other chemokines has been implicated in receptor binding, extends like a flexible tail in solution and possesses no secondary structure. The region of the ordered turn, including residues 25-28, experiences conformational exchange dynamics. The implications of these NMR data to the broad receptor binding capability of vMIP-II are discussed.[Abstract] [Full Text] [Related] [New Search]