These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differential effects of safflower oil versus fish oil feeding on insulin-stimulated glycogen synthesis, glycolysis, and pyruvate dehydrogenase flux in skeletal muscle: a 13C nuclear magnetic resonance study.
    Author: Jucker BM, Cline GW, Barucci N, Shulman GI.
    Journal: Diabetes; 1999 Jan; 48(1):134-40. PubMed ID: 9892234.
    Abstract:
    To examine the effects of safflower oil versus fish oil feeding on in vivo intramuscular glucose metabolism and relative pyruvate dehydrogenase (PDH) versus tricarboxylic acid (TCA) cycle flux, rats were pair-fed on diets consisting of 1) 59% safflower oil, 2) 59% menhaden fish oil, or 3) 59% carbohydrate (control) in calories. Rates of glycolysis and glycogen synthesis were assessed by monitoring [1-(13)C]glucose label incorporation into [1-(13)C]glycogen, [3-(13)C]lactate, and [3-(13)C]alanine in the hindlimb of awake rats via 13C nuclear magnetic resonance (NMR) spectroscopy during a euglycemic (approximately 6 mmol/l) hyperinsulinemic (approximately 180 microU/ml) clamp. A steady-state isotopic analysis of lactate, alanine, and glutamate was used to determine the relative PDH versus TCA cycle flux present in muscle under these conditions. The safflower oil-fed rats were insulin resistant compared with control and fish oil-fed rats, as reflected by a markedly reduced glucose infusion rate (Ginf) during the clamp (21.4 +/- 2.3 vs. 31.6 +/- 2.8 and 31.7 +/- 1.9 mg x kg(-1) x min(-1) in safflower oil versus control and fish oil groups, respectively, P < 0.006). This decrease in insulin-stimulated glucose disposal in the safflower oil group was associated with a lower rate of glycolysis (21.7 +/- 2.2 nmol x g(-1) x min(-1)) versus control (62.1 +/- 10.3 nmol x g(-1) x min(-1), P < 0.001) and versus fish oil (45.7 +/- 6.7 nmol x g(-1) x min(-1), P < 0.04), as no change in glycogen synthesis (103 +/- 15, 133 +/- 19, and 125 +/- 14 nmol x g(-1) x min(-1) in safflower oil, fish oil, and control, respectively) was detected. The intramuscular triglyceride (TG) content was increased in the safflower oil group (7.3 +/- 0.8 micromol/g) compared with the control group (5.2 +/- 0.8 micromol/g, P < 0.05) and the fish oil group (3.6 +/- 1.1 micromol/g, P < 0.01). Conversely, the percent PDH versus TCA cycle flux was decreased in the safflower oil (43 +/- 8%) versus the control (73 +/- 8%, P < 0.01) and fish oil (64 +/- 6%, P < 0.05) groups. These data suggest that the reduced insulin-stimulated glucose disposal attributed to safflower oil feeding was a consequence of reduced glycolytic flux associated with an increase in relative free fatty acid/ketone oxidation versus TCA cycle flux, whereas fish oil feeding did not alter glucose metabolism and may in part be protective of insulin-stimulated glucose disposal by limiting intramuscular TG deposition.
    [Abstract] [Full Text] [Related] [New Search]