These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: TNF-alpha expression in embryos exposed to a teratogen.
    Author: Ivnitsky I, Torchinsky A, Gorivodsky M, Zemliak I, Orenstein H, Savion S, Shepshelovich J, Carp H, Fein A, Toder V.
    Journal: Am J Reprod Immunol; 1998 Dec; 40(6):431-40. PubMed ID: 9894568.
    Abstract:
    PROBLEM: The role of tumor necrosis factor (TNF)-alpha produced by embryonic cells in normal and abnormal development is poorly understood. To assess to what extent TNF-alpha may be involved in the process of induced dysmorphogenesis, the expression of TNF-alpha and TNF-alpha receptor (TNFRI) mRNA as well as TNF-alpha protein was evaluated in embryos responding to a cyclophosphamide (CP)-induced teratogenic insult. The effect of maternal immunostimulation increasing the embryo's tolerance to CP on TNF-alpha expression was also investigated. METHOD OF STUDY: ICR female mice were treated intraperitoneally with 40 mg/kg CP on day 12 of pregnancy. The immunostimulator, xenogeneic rat splenocytes, was injected intrauterine 21 days before mating. Embryos were collected on days 13, 14, or 15 of pregnancy. TNF-alpha mRNA, TNFRI mRNA, and TNF-alpha protein expression were evaluated by in situ hybridization and immunostaining techniques in control, teratogen-treated, and immuno-stimulated teratogen-treated embryos. RESULTS: CP-treated embryos showed severe external brain and craniofacial anomalies already visible on day 14 of pregnancy. TNF-alpha mRNA transcripts were detected in cells of the brain and the head of 13-day embryos, which preceded the occurrence of CP-induced external craniofacial anomalies. On day 15 of pregnancy, when severe craniofacial anomalies increased, a significant increase in the intensity of TNF-alpha, TNFR1 mRNA transcripts, and TNF-alpha protein expression were observed in cells of the malformed regions of the head and the brain. In other nonmalformed organs of CP-treated embryos such as the liver (not macroscopically different from controls), neither TNF-alpha nor TNFR1 transcripts were detected. Immunostimulation substantially diminished the severity of CP-induced brain and craniofacial anomalies, decreased the resorption rate, and was associated with decreased intensity of TNF-alpha mRNA transcripts detected on day 15 of pregnancy in the head and the brain of CP-treated embryos. CONCLUSIONS: TNF-alpha expressed in the embryo may be one of the molecules promoting the formation of CP-induced brain and craniofacial anomalies. The decrease of TNF-alpha expression in embryos of immunostimulated females may be one of the mechanisms responsible for the increased tolerance to the teratogenic insult.
    [Abstract] [Full Text] [Related] [New Search]