These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tricarboxylic acid-cycle and related enzymes in restricted facultative methylotrophs. Author: Colby J, Zatman LJ. Journal: Biochem J; 1975 Jun; 148(3):505-11. PubMed ID: 991. Abstract: The isolation is described of pure cultures of three non-methane-utilizing methylotrophic bacteria which, together with the previously described Bacillus PM6, have a very limited range of growth substrates; these organisms are designated "restricted facultative' methylotrophs. Two of these isolates, W6A and W3A1, grow only on glucose out of 50 non-C1 compounds tested, whereas the third isolate S2A1 and Bacillus PM6 grow on betaine, glucose, gluconate, alanine, glutamate, citrate and nutrient agar, but not on any of a further 56 non-C1 compounds. Crude sonic extracts of trimethylamine-grown and glucose-grown W6A and W3A1 isolates, and of trimethylamine-grown C2A1 (an obligate methylotroph) contain (i) no detectable 2-oxogltarate dehydrogenase activity, (ii) very low or zero specific activities of succinate dehydrogenase and succinyl-CoA synthetase and (iii) NAD+-dependent isocitrate dehydrogenase activity. Extracts of trimethylamine-grown PM6 and S2A1 methylotrophs have (i) very low 2-oxoglutarate dehydrogenase specific activities, (ii) comparatively high specific activities of succinate dehydrogenase, malate dehydrogenase and succinyl-CoA synthetase and (iii) NADP+-dependent isocitrate dehydrogenase activity but no NAD+-dependent isocitrate dehydrogenase activity. The activities of most of these enzymes are increased during growth on glucose, alanine, glutamate or citrate, but only very low 2-oxoglutarate dehydrogenase activities are present under all growth conditions. The restricted facultative methylotrophs grow on certain non-C1 compounds in the absence of 2-oxoglutarate dehydrogenase and, in some cases, of other enzymes of the tricarboxylic acid cycle; these lesions cannot therefore be the sole cause of obligate methylotrophy.[Abstract] [Full Text] [Related] [New Search]