These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Granulolysis in neurosecretory neurons of the rat supraoptico-posthypophyseal system.
    Author: Boudier JA, Picard D.
    Journal: Cell Tissue Res; 1976 Sep 06; 172(1):39-58. PubMed ID: 991204.
    Abstract:
    Ultrastructural and cytochemical observations on neurosecretory neurons of the rat supraoptico-posthypophyseal systems were made under experimental conditions which resulted in striking changes in the amount of neurosecretory granules and lysosomes. Attention was focused on granulolysis. At the onset of rehydration following a 4 days water deprivation, very active autophage took place in neurosecretory axons of the neural lobe involving the marked increase in smooth endoplasmic reticulum, microvesicles and neurosecretory granules, although the latter were still very few due to previous depletion. When axonal transport was inhibited by colchicine at the onset of rehydration, granules accumulated in the perikarya while granule reloading of the neural lobe was delayed. However autophagy, although always active in axons, remained scarce in perikarya. Moreover, in the latter there was only slight evidence of crinophagy. Hypophysectomy also induced granule accumulation in the perikarya, although accompanied by little granulolysis. Images indicative of crinophagy as shown by acid phosphatase localization were few and exclusively restricted to perikarya, while autophagy occurred essentially in axons. Autophagy appeared to be the predominant process for granulolysis and might be considered here as an aspect of the general turnover of cell constituents, related to the sudden regression of hyperactivity-induced hyperthrophy, rather than as an expression of a specific regulation of an excess of secretory material.
    [Abstract] [Full Text] [Related] [New Search]